
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328878602

Block Belief Propagation for Parameter Learning in Markov Random Fields

Preprint · November 2018

CITATIONS

0
READS

25

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Deep Dynamic Mode Decomposition View project

Hierarchical Monitoring, Optimization and Control for Large Distribution Networks View project

You Lu

Virginia Polytechnic Institute and State University

10 PUBLICATIONS 25 CITATIONS

SEE PROFILE

Zhiyuan Liu

University of Colorado Boulder

24 PUBLICATIONS 56 CITATIONS

SEE PROFILE

All content following this page was uploaded by Zhiyuan Liu on 17 December 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/328878602_Block_Belief_Propagation_for_Parameter_Learning_in_Markov_Random_Fields?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328878602_Block_Belief_Propagation_for_Parameter_Learning_in_Markov_Random_Fields?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deep-Dynamic-Mode-Decomposition?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hierarchical-Monitoring-Optimization-and-Control-for-Large-Distribution-Networks?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/You_Lu13?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/You_Lu13?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Virginia_Polytechnic_Institute_and_State_University?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/You_Lu13?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiyuan_Liu14?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiyuan_Liu14?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado_Boulder?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiyuan_Liu14?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiyuan_Liu14?enrichId=rgreq-9e2835b070a55664e4b8cabee933da26-XXX&enrichSource=Y292ZXJQYWdlOzMyODg3ODYwMjtBUzo3MDQ5MzM3MTYzMTIwNjVAMTU0NTA4MDcwMzA5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Block Belief Propagation for Parameter Learning in Markov Random Fields

You Lu
Department of Computer Science

Virginia Tech
Blacksburg, VA

you.lu@vt.edu

Zhiyuan Liu
Department of Computer Science
University of Colorado Boulder

Boulder, CO
zhiyuan.liu@colorado.edu

Bert Huang
Department of Computer Science

Virginia Tech
Blacksburg, VA

bhuang@vt.edu

Abstract

Traditional learning methods for training Markov random
fields require doing inference over all variables to compute
the likelihood gradient. The iteration complexity for those
methods therefore scales with the size of the graphical mod-
els. In this paper, we propose block belief propagation learn-
ing (BBPL), which uses block-coordinate updates of approx-
imate marginals to compute approximate gradients, removing
the need to compute inference on the entire graphical model.
Thus, the iteration complexity of BBPL does not scale with
the size of the graphs. We prove that the method converges
to the same solution as that obtained by using full inference
per iteration, despite these approximations, and we empiri-
cally demonstrate its scalability improvements over standard
training methods.

Introduction
Markov random fields (MRFs) and conditional random
fields (CRFs) are powerful classes of models for learning
and inference of factored probability distributions (Koller
and Friedman 2009; Wainwright and Jordan 2008). They
have been widely used in tasks such as structured pre-
diction (Taskar, Guestrin, and Koller 2004) and computer
vision (Nowozin and Lampert 2011). Traditional training
methods for MRFs learn by maximizing an approximate
maximum likelihood. Many such methods use variational in-
ference to approximate the crucial partition function.

With MRFs, the gradient of the log likelihood with respect
to model parameters is the marginal vector. With CRFs, it
is the expected feature vector. These identities suggest that
each iteration of optimization must involve computation of
the full marginal vector, containing the estimated marginal
probabilities of all variables and all dependent groups of
variables. In some applications, the number of variables can
be massive, making traditional, full-inference learning too
expensive in practice. This problem limits the application of
MRFs in modern data science tasks.

In this paper, we propose block belief propagation learn-
ing (BBPL), which alleviates the cost of learning by comput-
ing approximate gradients with inference over only a small
block of variables at a time. BBPL first separates the Markov

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

network into several small blocks. At each iteration of learn-
ing, it selects a block and computes its marginals. It approx-
imates the gradient with a mix of the updated and the previ-
ous marginals, and it updates the parameters of interest with
this gradient.

Related Work
Many methods have been developed to learn MRFs. In this
section, we cover only the BP-based methods.

Mean-field variational inference and belief propagation
(BP) approximate the partition function with non-convex
entropies, which break the convexity of the original par-
tition function. In contrast, convex BP (Globerson and
Jaakkola 2007; Heskes 2006; Schwing et al. 2011; Wain-
wright, Jaakkola, and Willsky 2005; Wainwright 2006) pro-
vides a strongly convex upper bound for the partition func-
tion. This strong convexity has also been theoretically shown
to be beneficial for learning (London, Huang, and Getoor
2015). Thus, our BBPL method uses convex BP to approxi-
mate the partition function.

Regarding inference, some methods are developed to ac-
celerate computations of the beliefs and messages. Stochas-
tic BP (Noorshams and Wainwright 2013) updates only one
dimension of the messages at each inference iteration, so
its iteration complexity is much lower than traditional BP.
Distributed BP (Schwing et al. 2011; Yin and Gao 2014)
distributes and parallelizes the computation of beliefs and
messages on a cluster of machines to reduce inference time.
Sparse-matrix BP (Bixler and Huang 2018) uses sparse-
matrix products to represent the message-passing indexing,
so that it can be implemented on modern hardware. How-
ever, to learn MRF parameters, we need to run these infer-
ence algorithms for many iterations on the whole network
until convergence at each parameter update. Thus, these
methods are still impacted by the network size.

Regarding learning, many learning frameworks have been
proposed to efficiently learn MRF parameters. Some ap-
proaches use neural networks to directly estimate the mes-
sages (Lin et al. 2015; Ross et al. 2011). Methods that trun-
cate message passing (Domke 2011; Domke 2013; Stoy-
anov, Ropson, and Eisner 2011) redefine the loss function
in terms of the approximate inference results obtained af-
ter message passing is truncated to a small number of itera-
tions. These methods can be inefficient because they require

ar
X

iv
:1

81
1.

04
06

4v
1

 [
cs

.L
G

]
 9

 N
ov

 2
01

8

running inference on the full network for a fixed number of
iterations or until convergence. Moreover, they yield non-
convex objectives without convergence guarantees.

Some methods restrict the complexity of inference on a
subnetwork at each parameter update. Lifted BP (Kersting,
Ahmadi, and Natarajan 2009; Singla and Domingos 2008)
makes use of the symmetry structure of the network to group
nodes into super-nodes, and then it runs a modified BP on
this lifted network. A similar approach (Ahmadi, Kersting,
and Natarajan) uses a lifted online training framework that
combines the advantages of lifted BP and stochastic gra-
dient methods to train Markov logic networks (Richardson
and Domingos 2006). These lifting approaches rely on sym-
metries in relational structure—which may not be present
in many applications—to reduce computational costs. They
also require extra algorithms to construct the lifted network,
which increase the difficulty of implementation. Piecewise
training separates a network into several possibly overlap-
ping sets of pieces, and then uses the piecewise pseudo-
likelihood as the objective function to train the model (Sut-
ton and McCallum 2009). Decomposed learning (Samdani
and Roth 2012) uses a similar approach to train structured
support vector machines. However, these methods need to
modify the structure of the network by decomposing it, thus
changing the objective function.

Finally, inner-dual learning methods (Bach et al. 2015;
Hazan and Urtasun 2010; Hazan, Schwing, and Urtasun
2016; Meshi et al. 2010; Taskar et al. 2005) interleave pa-
rameter optimization and inference to avoid repeated infer-
ences during training. These methods are fast and conver-
gent in many settings. However, in other settings, key bot-
tlenecks are not fully alleviated, since each partial inference
still runs on the whole network, causing the iteration cost to
scale with the network size.

Contributions

In contrast to many existing approaches, our proposed
method uses the same convex inference objective as tradi-
tional learning, providing the same benefits from learning
with a strongly convex objective. BBPL thus scales well to
large networks because it runs convex BP on a block of vari-
ables, fixing the variables in other blocks. This block up-
date guarantees that the iteration complexity does not in-
crease with the network size. BBPL preserves communica-
tion across the blocks, allowing it to optimize the original
objective that computes inference over the entire network at
convergence. The update rules of BBPL are similar in form
to full BP learning, which makes it as easy to implement as
traditional MRF or CRF training. Finally, we theoretically
prove that BBPL converges to the same solution under mild
conditions defined by the inference assumption. Our exper-
iments empirically show that BBPL does converge to the
same optimum as full BP.

Background
In this section, we introduce notation and background
knowledge directly related to our work.

Convex Belief Propagation for MRFs
Let x = [x1, ..., xn] be a discrete random vector taking
values in X = X1 × · · · × Xn, and let G = (V,E)
be the corresponding undirected graph, with the vertex set
V = {1, ..., n} and edge setE ⊂ V ×V . Potential functions
θs : Xs → R and θuv : Xu × Xv → R are differentiable
functions with parameters we want to learn. The probability
density function of a pairwise Markov random field (Wain-
wright and Jordan 2008) can be written as

p(x|θ) = exp{
∑
s∈V

θs(xs) +
∑

(u,v)∈E

θuv(xu, xv)−A(θ)}.

The log partition function

A(θ) = log
∑
X

exp{
∑
s∈V

θs(xs) +
∑

(u,v)∈E

θuv(xu, xv)}

(1)
is intractable in most situations whenG is not a tree. One can
approximate the log partition function with a convex upper
bound:

B(θ) = max
τ∈L(G)

{〈θ, τ〉 −B∗(τ)}, (2)

where

θ = {θs|s ∈ V } ∪ {θuv|(u, v) ∈ E},
τ = {τs|s ∈ V } ∪ {τuv|(u, v) ∈ E},

L(G) := {τ ∈ Rd+|
∑
xs

τs(xs) = 1,∑
xv

τuv(xu, xv) = τu(xu)}.

The vector τ is called the pseudo-marginal or belief vec-
tor. Specifically, τs is the unary belief of vertex s, and τuv is
the pairwise belief of edge (u, v). The local marginal poly-
tope L restricts the unary beliefs to be consistent with their
connected pairwise beliefs. We consider a variant of belief
propagation whereB∗(τ) is strongly convex and has the fol-
lowing form:

B∗(τ) =
∑
s∈V

ρsH(τs) +
∑

(u,v)∈E

ρuvH(τuv),

where ρs and ρuv are parameters known as counting num-
bers, and H(.) is the entropy.

Equation 2 can be solved via convex BP (Meshi et al.
2009; Yedidia, Freeman, and Weiss 2005). Let λuv be the
message from vertex u to vertex v. The update rules of mes-
sages and beliefs are as follows:

λuv = ρuv log
∑
u

exp{ 1

ρuv
(θuv − λvu) + log τu}, (3)

where
τu ∝ exp{ 1

ρu
(θu +

∑
v∈N(u)

λvu)}, (4)

and

τuv ∝ exp{ 1

ρuv
(θuv − λuv − λvu) + log τuτv}. (5)

Other forms of convex BP, such as tree-reweighted
BP (Wainwright, Jaakkola, and Willsky 2005), can also be
used in our approach. Convex BP does not always converge
on loopy networks. However, under some mild conditions,
it is guaranteed to converge and can be a good approxima-
tion for general networks (Roosta, Wainwright, and Sastry
2008).

Learning Parameters of MRFs
In this subsection, we introduce traditional training methods
for fitting MRFs to a dataset via a combination of BP and a
gradient-based optimization. The learning algorithm is given
a dataset with N data points, i.e., w1, ..., wN . It then learns
θ by minimizing the negative log-likelihood:

L(θ) = − 1

N

∑
n

log p(wn|θ)

= − 1

N

∑
n

θTwn +A(θ)

≈ −θT w̄ +B(θ)

= −θT w̄ + max
τ∈L(G)

{〈θ, τ〉 −B∗(τ)}, (6)

where w̄ = 1/N
∑
n wn.

Using B(θ) as the tractable approximation of A(θ), the
traditional learning approach is to minimize L(θ) using
gradient-based methods. Let θt be the parameter vector at
iteration t, and let τ∗t be the optimized τ corresponding to
θt. Then gradient learning is done by iterating

θt+1 = θt − αt∇θL(θt), (7)
where

∇θL(θt) = −w̄ + τ∗t , (8)
and αt is the learning rate. The traditional parameter learn-
ing process is described in Algorithm 1.

Algorithm 1 Parameter learning with full convex BP

1: Initialize θ0.
2: While θ has not converged
3: While λ has not converged
4: Update τ with Equation 4.
5: Update λ with Equation 3.
6: end
7: ∇L(θt) = −w̄ + τ∗t
8: θt+1 = θt − αt∇L(θt)
9: end

Traditional parameter learning requires running inference
on each full training example per gradient update, so we re-
fer to it as full BP learning. These full inferences cause it to
suffer scalability limitations when the training data includes
large MRFs. The goal of our contributions is to circumvent
these limitations.

Block Belief Propagation Learning
In this section, we introduce our proposed method, which
has a much lower iteration complexity than full BP learning
and is guaranteed to converge to the same optimum as full
convex BP learning.

Algorithm Description
The full BP learning method in Algorithm 1 does not scale
well to large networks. It needs to perform inference on the
full network at each iteration, i.e., Step 2 to Step 5 in Al-
gorithm 1. The iteration complexity depends on the size of
network. When the network is large—e.g., a network with at
least tens of thousands of nodes—the dimensions of τ and λ
are also large. Updating all their dimensions in each gradient
step creates a significant computational inefficiency.

To address this problem, we develop block belief propaga-
tion learning (BBPL). BBPL only needs to do inference on
a subnetwork at each iteration, which means that, for tem-
plated models, the iteration complexity of BBPL does not
depend on the size of the network. For non-templated mod-
els, the iteration complexity has a greatly reduced depen-
dency on the network size. Moreover, we can prove the con-
vergence of BBPL, guaranteeing that it will converge to the
same optimum as full BP learning. Finally, BBPL’s update
rules are analogous to those of full BP learning, so it is as
easy to implement as full BP learning.

BBPL first separates the vertex set V into D subsets
V1, ..., VD. Then it separates the edge set E into D subsets
of edges incident on the corresponding vertex subsets, i.e.,
Ei = {(u, v)|(u, v) ∈ E and (u ∈ Vi or v ∈ Vi)}.
Thus, we have that V = V1 ∪ V2 ∪ ... ∪ VD, and E =
E1 ∪ E2 ∪ ... ∪ ED. For shorthand, let Fi = (Ei, Vi) de-
note the ith subnetwork.

At iteration t, BBPL selects a subgraph Fi and only up-
dates each τu if u ∈ Vi, and τuv and only λuv if (u, v) ∈ Ei.
It updates this block of messages and beliefs via belief
propagation—i.e., Equations 3, 4, and 5—holding all other
messages and beliefs fixed until convergence. Finally, BBPL
uses the updated block of beliefs to update θ by computing
an approximate gradient. Our empirical results show that ei-
ther selecting subgraphs randomly or sequentially can lead
to convergence, but sequentially selecting subgraphs can
make the algorithm converge faster.

With a slight abuse of notation, let Ft be the subnet-
work selected at iteration t. Let τ (Ft)

t and λ(Ft)
t be the sub-

matrices of τt and λt, respectively, that correspond to Ft. Let
UFt

be a projection matrix that projects the parameter from
R|Ft| to Rd. The update rules for τt and λt are

τt = τt−1 + UFt(τ
(Ft)
t − τ (Ft)

t−1), (9)

and
λt = λt−1 + UFt

(λ
(Ft)
t − λ(Ft)

t−1). (10)
After computing τt and λt, BBPL updates the parameters

using the approximate gradient:

g(θt) = −w̄ + τt. (11)

Note that the only difference between g(θt) and g(θt−1) is
the term τ

(Ft)
t − τ

(Ft)
t−1 . Thus, given g(θt−1), we can effi-

ciently update our gradient estimate with

g(θt) = g(θt−1) + UFt
(τ

(Ft)
t − τ (Ft)

t−1).

This equation implies that computation of the gradient also
does not depend on the size of the network. Changing the

gradient at the entries where the block marginal update was
performed can be done in place. Thus, the complexity of the
whole inference process and gradient computation depends
only on the size of the subnetwork. The only step that re-
quires time complexity that scales with the network size is
the actual parameter update using the gradient, which we
will later alleviate when using templated models. The com-
plete algorithm is listed in Algorithm 2.

Algorithm 2 Parameter estimation with block BP

1: Separate g into M subnetwork, i.e., F1, ..., FM .
2: While θ has not converged
3: Select a subgraph Ft.
4: While λFt has not converged
5: Update τFt

t with Equation 4.
6: Update λFt

t with Equation 3.
7: end
8: g(θt) = g(θt−1) + UFt(τ

(Ft)
t − τ (Ft)

t−1).
9: θ(t+1) = θ(t) − αtg(θt).

10: end

Convergence Analysis
In this subsection, we theoretically prove the convergence of
BPPL. We first rewrite the learning problem as follows:

min
θ

max
τ∈L(G)

−θT w̄ + θT τ −B∗(τ). (12)

Equation 12 is a convex-concave saddle-point problem.
We use (θ∗, τ∗) to represent its saddle point. Its correspond-
ing primal problem is

min
θ
L(θ) = −θT w̄ +B(θ), (13)

whereB(θ) is defined in Equation 2. Equation 12 and Equa-
tion 13 have the same optimal θ.

Thus, we can prove the convergence of BBPL follow-
ing the general framework for proving the convergence of
saddle-point optimizations (Du and Hu 2018). We prove that
under a mild assumption, i.e., Assumption 1, BBPL has a
linear convergence rate.

Assumption 1 When θ has not converged, the block coordi-
nate update, i.e., Equation 9, satisfies the following inequal-
ity:

||τt+1 − τ∗t+1|| ≤ (1− c)||τt − τ∗t+1||,
where 0 < c < 1.

Informally, we can interpret Assumption 1 to mean that,
at iteration t + 1, the vector τt+1 with new block τ (Ft)

t+1 will
get closer to the optimum τ∗t+1. This assumption is easy to
satisfy when θ has not converged. Since the block τ (Ft)

t+1 of
τt+1 is updated with respect to θt+1, and τ∗t+1 is the true
optimum with respect to θt+1, τt+1 should be closer to τ∗t+1.
When θ converges, block BP becomes a block coordinate
update method. Based on claims shown by Schwing et al.
(2011), τt converges to τ∗.

The following theorem establishes the linear convergence
guarantee of Algorithm 2.

Theorem 1 The primal of BBPL, i.e., Equation 13, is β-
strongly convex and η-smooth. When we use BBPL to learn
the parameters, suppose BBPL satisfies Assumption 1. De-
fine the Lyapunov function

Pt = ||θt − θ∗||+ γ||τt − τ∗t ||.

When 0 < αt ≤ min{ cβ
2η2+ηβ+β2 ,

2
η+β }, and γ = β

2(1−c)η2 ,
we have

Pt+1 ≤ (1− δ)Pt,
where 0 < δ < 1. This bound implies that limt→∞ Pt = 0,
and θt will converge linearly to the optimum θ∗.

Proof sketch. The proof is based on the proof framework
detailed by Du and Hu (2018). The proof can be divided to
three steps. First, we bound the decrease of ||θt − θ∗||. Sec-
ond, we bound the decrease of ||τt − τ∗t ||. Third, we prove
that Pt+1 ≤ (1 − δ)Pt. The complete proof is in the ap-
pendix. �

Generalization to Templated or Conditional
Models
So far, we have described the BBPL approach in the set-
ting where there is a separate parameter for every entry in
the marginal vector. In templated or conditional models, the
parameters can be shared across multiple entries. We de-
scribe here how BBPL generalizes to such models. For con-
ditional models, we use MRFs to infer the probability of out-
put variables Y given input variables X , i.e., Pr(Y |X). A
standard modeling technique for this task is to encode the
joint states of the input and output variables with some fea-
ture vectors, so the parameters are weights for these features.
We are given a dataset of fully observed input-output pairs
S = {(Mi, yi)}Ni=1, where Mi ∈ RK×d is the feature ma-
trix, and yi ∈ Rd is the label vector (i.e., the one-hot encod-
ing of the ground-truth variable states). The negative log-
likelihood of a conditional random field is defined as

L(θ̃) = − 1

N

N∑
i=1

logLi(θ̃,Mi, yi), (14)

where θ̃ ∈ RK is the parameter we want to learn, and

Li(θ̃,Mi, yi) = θ̃TMiyi −B(θ̃TMi). (15)

The definition of B(θ̃TMi) is similar to that for MRFs.
We can interpret θ̃>Mi to be the expanded, or “grounded,”
potential vector. The product with feature matrix Mi maps
from the low-dimensional θ̃ to a possibly high-dimensional,
full potential vector θ. To be precise, the definition is

B(θ̃TMi) = max
τi∈L(G)

{θ̃TMiτi −B∗(τi)}.

For each data point i, we can still use BBP to update
τi,t at iteration t, i.e, lines 4–9 in Algorithm 2. Let w̄ =
1
N

∑
iMiyi. The approximate gradient is then

g(θ̃t) = w̄ − 1

N

N∑
i=1

Miτi,t. (16)

Given g(θ̃t−1), we compute g(θ̃t) with the following rule:

g(θ̃t−1) = g(θ̃t−1) +
1

N

N∑
i=1

Ui,Ft
(τ

(Ft)
i,t − τ

(Ft)
i,t−1).

Thus, the iteration complexity of inference only depends
on the subnetwork size, rather than the size of the whole
network.

Regarding convergence, note that each matrix Mi is con-
stant, and its norm is bounded by its eigenvalues. Using the
same proof method as that of Theorem 1, we can straight-
forwardly prove that it still has a linear convergence rate.

The same formulation—using a matrix M to map from
a low-dimensional parameter vector θ̃ to a possibly high-
dimensional, full potential vector—can also be used to de-
scribe templated MRFs, where the same potential func-
tions may be used in multiple parts of the graph. Therefore
the same techniques and analysis also apply for templated
MRFs.

Empirical Study
In this section, we empirically analyze the performance of
BBPL. We design two groups of experiments. In the first
group of experiments, we evaluate the sensitivity of our
method on the block size and empirically measure its con-
vergence on synthetic networks. In the second group of ex-
periments, we test our methods on a popular application of
MRFs: image segmentation on a real image dataset.

Baselines We compare BBPL to other methods that ex-
actly optimize the full variational likelihood. We use full
convex BP and inner-dual learning (Bach et al. 2015; Hazan,
Schwing, and Urtasun 2016) as our baselines. Full BP learn-
ing runs inference to convergence each gradient step, and
inner-dual learning accelerates learning by performing only
one iteration of inference per learning iteration.

Metrics We evaluate the convergence and correctness of
our method by measuring the objective value and the dis-
tance between the current parameter vector θ and the optimal
θ∗. To compute the objective value, we store the parameters
θt obtained by full BP learning, BBPL, or inner-dual learn-
ing during training. We then plug each into Equation 15 to
compute the variational negative log-likelihood. To compute
the distance between θt and θ∗, we first run convex BP learn-
ing until convergence to get θ∗, and then we use the `2 norm
to measure the distance.

Experiments on Synthetic Networks
We generate two types of synthetic MRFs: grid networks
and BarabsiAlbert (BA) random graph networks (Albert and
Barabási 2002). The nodes of the BA networks are ordered
according to their generating sequence. We generate true
unary and pairwise features from zero-mean, unit-variance
Gaussian distributions. The unary feature dimension is 20
and the pairwise feature dimension is 10, and each variable
has 8 possible states. Once the true models are generated,
we draw 20 samples for each dataset with Gibbs sampling.

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

Grid Network

1x
5

2x
5

3x
5

4x
5

5x
5

5x
6

5x
7

5x
8

5x
9

5x
10

6x
10

7x
10

8x
10

9x
10

10
x1

00

2000

4000

6000

R
un

ni
ng

 T
im

e
(s

)

Network Size
● 100x100

150x150
200x200
50x50

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

BA Network

25 50 75 10
00

1000

2000

3000

4000

Number of Blocks

R
un

ni
ng

 T
im

e
(s

)

Network Size
● 1000 Nodes

10000 Nodes
20000 Nodes
5000 Nodes

Figure 1: Sensitivity of BBPL to block size. The label 5× 5
in the top polot represents that each grid is divided to 5 rows
and 5 columns of sub-networks. The label 20 in the bottom
plot represents that the network is divided into 20 networks.
The results show that BBPL converges the fastest when each
block’s size is about 20 to 25 times smaller than the network.

Sensitivity to block size We conduct experiments on grid
networks of four different sizes, i.e., 50 × 50, 100 × 100,
150 × 150, and 200 × 200, and on BA networks with four
different sizes, i.e., 1,000 nodes, 5,000 nodes, 10,000 nodes,
and 20,000 nodes. For the grid networks, we vary the num-
ber of blocks from 25 (5×5) to 100 (10×10). For example,
when the network size is 200×200 and the number of blocks
is 5× 5, we separate the network into 25 sub-networks, and
each sub-network’s size is 40 × 40. For the BA networks,
we vary the number of blocks from 5 to 100. We separate
the nodes of each BA network based on their indices. For
example, for a node set V = {1, 2, ..., 10}, if we want to
separate it into two subsets, we will let V1 = 1, ..., 5, and
V2 = {6, ..., 10}.

The results are plotted in Figure 1. The trends indicate that
when each block is between 20 to 25 times smaller than the
network, BBPL converges the fastest. When the block size is
too small, the algorithm needs more iterations to converge.
When the block size is too large, per-iteration complexity
will be large. Blocks that are either too large or too small
can reduce the benefits of BBPL.

Convergence analysis For the grid networks, we vary the
network size from 10 × 10 to 200 × 200, and we set the
number of blocks to 4 × 5. For the BA networks, we vary
the network size from 100 to 20,000, and we set the number
of blocks to 20. Figure 2 and Figure 3 empirically show the
convergence of BBPL on different networks. Figure 4 plots
the running time comparison on networks with all sizes.
From Figure 2 we can see that BBPL converges to the same
solution as full BP learning, while requiring significantly
less time. Figure 4 shows that on all networks, BBPL is the
fastest. The acceleration is more significant when the net-
work is large. For example, when the grid network’s size is
200× 200, BBPL is about three times faster than the inner-

50x50 Network

0 200 400 600

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

100x100 Network

0 500 1000 1500 2000 2500

1e−11

1e−07

1e−03

1e+01

Running Time (s)
L2

 N
or

m

150x150 Network

0 2000 4000 6000 8000

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

200x200 Network

0 5000 10000 15000

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

50x50 Network

0 20 40 60 80
9.4

9.6

9.8

10.0

10.2

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

100x100 Network

0 100 200 300

9.6

9.8

10.0

10.2

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

150x150 Network

0 300 600 900

9.6

9.8

10.0

10.2

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

200x200 Network

0 500 1000 1500 2000 2500

9.6

9.8

10.0

10.2

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

Algorithm BBPL Full Convex BP Learning Inner−dual Learning

Figure 2: Convergence on grid networks. The top row plots the `2 distance from the optimum, and the second row plots the
objective values. The `2 plots show the full running time of each method, but for clarity, we zoom into the plots of objective
values by truncating the x-axis.

BA 1000 Nodes

0 50 100 150 200

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

BA 5000 Nodes

0 500 1000 1500

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

BA 10000 Nodes

0 500 1000 1500 2000 2500

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

BA 20000 Nodes

0 2000 4000

1e−11

1e−07

1e−03

1e+01

Running Time (s)

L2
 N

or
m

BA 1000 Nodes

0 10 20 30

9.6

9.8

10.0

10.2

10.4

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

BA 5000 Nodes

0 100 200 300

9.6

9.8

10.0

10.2

10.4

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

BA 10000 Nodes

0 100 200 300 400 500

9.75

10.00

10.25

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

BA 20000 Nodes

0 250 500 750

9.75

10.00

10.25

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

Algorithm BBPL Full Convex BP Learning Inner−dual Learning

Figure 3: Results on BA networks. The top row again plots the `2 distance from the optimum, and the bottom row plots the
objective zoomed to show behavior early during optimization.

dual method and seven times faster than full convex BP.
When the BA network size is 20,000, BBPL is about two
times faster than inner-dual learning and three times faster
than full convex BP.

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

Grid Network

10
x1

0

20
x2

0

30
x3

0

40
x4

0

50
x5

0

60
x6

0

70
x7

0

80
x8

0

90
x9

0

10
0x

10
0

11
0x

11
0

12
0x

12
0

13
0x

13
0

14
0x

14
0

15
0x

15
0

16
0x

16
0

17
0x

17
0

18
0x

18
0

19
0x

19
0

20
0x

20
00

5000

10000

15000

R
un

ni
ng

 T
im

e
(s

)

●
●

●
●

●
●

●
●

●

BA Network

0 50
00

10
00

0

15
00

0

20
00

00

2000

4000

Network Size

R
un

ni
ng

 T
im

e
(s

)

Algorithm ● BBPL Full Convex BP Learning Inner−dual Learning

Figure 4: Comparisons of running time on networks with
different sizes. BBPL converges much faster than the other
two methods, especially on large networks where the im-
provement in running time is more significant.

Experiments on Image Dataset
For our real data experiments, we use the scene understand-
ing dataset (Gould, Fulton, and Koller 2009) for semantic
image segmentation. Each image is 240×320 pixels in size.
We randomly choose 50 images as the training set and 20
images as the test set. We extract unary features from a fully
convolutional network (FCN) (Long, Shelhamer, and Dar-
rell 2015). We add a linear transpose layer between the out-
put layer and the last deconvolution layer of the FCN. This
transpose layer does not impact the FCN’s performance. Let
x ∈ Rn be the output of the deconvolution layer and y ∈ Rc
be the number of classes of the dataset. Then the input of
the transpose layer is x and its output is y. We use x as the
MRF’s unary features. We use FCN-32 models to generate
the features and we fine-tuned its parameters from the pre-
trained VGG 16-layer network (Simonyan and Zisserman
2014). Our pairwise features are based on those of Domke
(2013): for edge features of vertex s and t, we compute the
`2 norm of unary features between s and t and discretize it
to 10 bins.

We train MRFs on this segmentation task. Since these
MRFs are large, full BP learning cannot run in a reason-
able amount of time. Instead, we first run BBPL until con-
vergence, and then we run inner-dual learning and full BP
learning for the same amount of time. Finally, we compare
their objective values during optimization. This evaluation
scheme was necessary because the baseline methods need
several days to converge on these large networks. The re-
sults are plotted in Figure 5, and Table 1 shows the num-
ber of iterations each algorithm runs when it stops. BBPL’s
per-iteration complexity is much lower than the other meth-
ods, so it runs the most number of iterations in the same
time. Following the trends seen in the synthetic experiments,

BBPL again reduces the objective much faster than the two
other methods.

Table 1: Number of iterations each algorithm runs.

BBPL Inner-dual Learning Full BP Learning
601 163 21

Scene Understanding

0 10000 20000 30000

3

6

9

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

Algorithm
BBPL
Full Convex BP Learning
Inner−dual Learning

Figure 5: The learning objective during training on the scene
understanding dataset. We run the three methods for the
same amount of time. Our BBPL method is much faster than
the two other methods.

Conclusion
In this paper, we developed block belief propagation learn-
ing (BBPL), for training Markov random fields. At each
learning iteration, our method only performs inference on a
subnetwork, and it uses an approximation of the true gradi-
ent to optimize the parameters of interest. Thus, BBPL’s iter-
ation complexity does not scale with the size of the network.
We theoretically prove that BBPL has a linear convergence
rate and that it converges to the same optimum as convex BP.
Our experiments show that, since BBPL has much lower it-
eration complexity, it converges faster than other methods
that run (truncated or complete) inference on the full MRF
each learning iteration.

For future work, we plan to use the scalability of BBPL
to analyze large-scale networks. Further speedups may be
possible. Even though BBPL only needs to run inference on
a subnetwork, it still needs to run many iterations of belief
propagation until convergence. We plan to develop a more
efficient learning method that can stop inference in a fixed
number of iterations, combining the benefits of BBPL and
inner-dual learning. Finally, our proof depends on Assump-
tion 1, which has been made in the literature about belief
propagation-like algorithms but has not been proven. We
aim to both prove its validity for existing methods and use it
to help derive new inference methods suitable for learning.

Acknowledgments
We thank the anonymous reviewers, and Lijun Chen for for
their insightful comments.

References
Ahmadi, B.; Kersting, K.; and Natarajan, S. 2012. Lifted online
training of relational models with stochastic gradient methods.
In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases.
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of
complex networks. Reviews of Modern Physics 74:47.
Bach, S.; Huang, B.; Boyd-Graber, J.; and Getoor, L. 2015.
Paired-dual learning for fast training of latent variable hinge-
loss MRFs. In International Conference on Machine Learning.
Bixler, R., and Huang, B. 2018. Sparse matrix belief propaga-
tion. In Conference on Uncertainty in Artificial Intelligence.
Bubeck, S. 2015. Convex optimization: Algorithms and com-
plexity. Foundations and Trends R© in Machine Learning 8:231–
357.
Domke, J. 2011. Parameter learning with truncated message-
passing. In Computer Vision and Pattern Recognition.
Domke, J. 2013. Learning graphical model parameters with
approximate marginal inference. IEEE Transactions on Pattern
Analysis and Machine Intelligence 35(10):2454–2467.
Du, S. S., and Hu, W. 2018. Linear convergence of the primal-
dual gradient method for convex-concave saddle point problems
without strong convexity. arXiv preprint arXiv:1802.01504.
Globerson, A., and Jaakkola, T. 2007. Approximate inference
using conditional entropy decompositions. In Artificial Intelli-
gence and Statistics.
Gould, S.; Fulton, R.; and Koller, D. 2009. Decomposing a
scene into geometric and semantically consistent regions. In
International Conference on Computer Vision.
Hazan, T., and Urtasun, R. 2010. A primal-dual message-
passing algorithm for approximated large scale structured pre-
diction. In Advances in Neural Information Processing Systems.
Hazan, T.; Schwing, A. G.; and Urtasun, R. 2016. Blending
learning and inference in conditional random fields. The Journal
of Machine Learning Research 17:8305–8329.
Heskes, T. 2006. Convexity arguments for efficient minimiza-
tion of the Bethe and Kikuchi free energies. Journal of Artificial
Intelligence Research 26:153–190.
Kakade, S.; Shalev-Shwartz, S.; and Tewari, A. 2009. On the
duality of strong convexity and strong smoothness: Learning ap-
plications and matrix regularization. Technical report.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
belief propagation. In Uncertainty in Artificial Intelligence.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT press.
Lin, G.; Shen, C.; Reid, I.; and van den Hengel, A. 2015. Deeply
learning the messages in message passing inference. In Ad-
vances in Neural Information Processing Systems.
London, B.; Huang, B.; and Getoor, L. 2015. The benefits of
learning with strongly convex approximate inference. In Inter-
national Conference on Machine Learning.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolu-
tional networks for semantic segmentation. In Computer Vision
and Pattern Recognition, 3431–3440.
Meshi, O.; Jaimovich, A.; Globerson, A.; and Friedman, N.
2009. Convexifying the Bethe free energy. In Conference on
Uncertainty in Artificial Intelligence.

Meshi, O.; Sontag, D.; Jaakkola, T.; and Globerson, A. 2010.
Learning efficiently with approximate inference via dual losses.
In International Conference on Machine Learning.
Noorshams, N., and Wainwright, M. J. 2013. Stochastic belief
propagation: A low-complexity alternative to the sum-product
algorithm. IEEE Transactions on Information Theory 59:1981–
2000.
Nowozin, S., and Lampert, C. H. 2011. Structured learning
and prediction in computer vision. Foundations and Trends in
Computer Graphics and Vision 6:185–365.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62:107–136.
Roosta, T. G.; Wainwright, M. J.; and Sastry, S. S. 2008. Con-
vergence analysis of reweighted sum-product algorithms. IEEE
Transactions on Signal Processing 56:4293–4305.
Ross, S.; Munoz, D.; Hebert, M.; and Bagnell, J. A. 2011.
Learning message-passing inference machines for structured
prediction. In Computer Vision and Pattern Recognition.
Samdani, R., and Roth, D. 2012. Efficient decomposed learning
for structured prediction. arXiv preprint arXiv:1206.4630.
Schwing, A.; Hazan, T.; Pollefeys, M.; and Urtasun, R. 2011.
Distributed message passing for large scale graphical models. In
Computer Vision and Pattern Recognition.
Simonyan, K., and Zisserman, A. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.
Singla, P., and Domingos, P. M. 2008. Lifted first-order belief
propagation. In Association for the Advancement of Artificial
Intelligence.
Stoyanov, V.; Ropson, A.; and Eisner, J. 2011. Empirical risk
minimization of graphical model parameters given approximate
inference, decoding, and model structure. In International Con-
ference on Artificial Intelligence and Statistics, 725–733.
Sutton, C., and McCallum, A. 2009. Piecewise training for
structured prediction. Machine Learning 77(2–3):165–194.
Taskar, B.; Chatalbashev, V.; Koller, D.; and Guestrin, C. 2005.
Learning structured prediction models: A large margin ap-
proach. In International Conference on Machine Learning.
Taskar, B.; Guestrin, C.; and Koller, D. 2004. Max-margin
markov networks. In Advances in Neural Information Process-
ing Systems.
Wainwright, M. J., and Jordan, M. I. 2008. Graphical models,
exponential families, and variational inference. Foundations and
Trends in Machine Learning 1:1–305.
Wainwright, M. J.; Jaakkola, T. S.; and Willsky, A. S. 2005. A
new class of upper bounds on the log partition function. IEEE
Transactions on Information Theory 51:2313–2335.
Wainwright, M. J. 2006. Estimating the“wrong”graphical
model: Benefits in the computation-limited setting. Journal of
Machine Learning Research 7:1829–1859.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2005. Constructing
free-energy approximations and generalized belief propagation
algorithms. IEEE Transactions on Information Theory 51:2282–
2312.
Yin, J., and Gao, L. 2014. Scalable distributed belief propaga-
tion with prioritized block updates. In International Conference
on Conference on Information and Knowledge Management.

http://arxiv.org/abs/1802.01504
http://arxiv.org/abs/1206.4630
http://arxiv.org/abs/1409.1556

Proof of Theorem 1
The following two lemmas provide preliminaries for the
proof.
Lemma 1 The function

L(θ) = −θT w̄ +B(θ)

is β-strongly convex and η-smooth.
Proof. The function B∗(τ) is strongly convex and

smooth (Meshi et al. 2009; Yedidia, Freeman, and Weiss
2005; Wainwright 2006). The function B(θ) is the conju-
gate function of B∗(τ). Based on the conjugate function’s
property (Kakade, Shalev-Shwartz, and Tewari 2009), B(θ)
is also strongly convex and smooth. The other term of L(θ)
is the Euclidean inner product of θ and w̄, where w̄ is con-
stant. Thus, L(θ) is also strongly convex and smooth. �

Lemma 2 Suppose f : R → R is a β-strongly convex and
η-smooth function. Let x∗ = arg min f(x). When using gra-
dient descent to optimize x, i.e., xt+1 = xt−α∇f(xt), with
the learning rate 0 < α ≤ 2

β+η , we have

||xt+1 − x∗|| ≤ (1− βα)||xt − x∗||.

Proof. See Theorem 3.12 of (Bubeck 2015). �
The proof follows three steps, each detailed in its own

section below.

Step 1: Bounding the Decrease of ||θt − θ∗||
In the first step, we want to prove that ||θt+1 − θ∗|| is upper
bounded by the weighted sum of ||θt − θ∗|| and ||τt − τ∗t ||.
Lemma 3 Let θ̂t+1 = θt − αt∇L(θt), where 0 < αt ≤
2

β+η . Then

||θ̂t+1 − θ∗|| ≤ (1− βαt)||θt − θ∗||.

Proof. From Lemma 1, we know that L(θ) is β-strongly
convex and η-smooth. The parameter vector θ̂t+1 is obtained
via one step of the gradient descent update. This lemma then
follows from Lemma 2. �

Lemma 4 Let θt+1 = θt − αtg(θt), where 0 < αt ≤ 2
β+ρ .

Then

||θt+1 − θ∗|| ≤ (1− βαt)||θt − θ∗||+ αt||τt − τ∗t ||.

Proof. From the update rules of θt+1 and θ̂t+1, we have

||θ̂t+1 − θt+1|| = ||αt(g(θt)−∇L(θt))||
= ||αt(τt − τ∗t)||
≤ αt||τt − τ∗t ||.

Using Lemma 3 and the triangle inequality, we have

||θt+1 − θ∗|| = ||θt+1 − θ̂t+1 + θ̂t+1 − θ∗||
≤ ||θt+1 − θ̂t+1||+ ||θ̂t+1 − θ∗||
≤ (1− βαt)||θt − θ∗||+ αt||τt − τ∗t ||.

The last inequality proves the lemma. �

Step 2: Bounding the Decrease of ||τt − τ∗t ||
In the second step, we want to prove that the ||τt+1 − τ∗||
is upper bounded by the weighted sum of ||τt − τ∗t || and
||θt − θ∗||.
Lemma 5 Based on the update rules of τ and θ, we have

||τ∗t+1 − τ∗t || ≤ ηαt||τt − τ∗t ||+ η2αt||θt − θ∗||.

Proof.

||τ∗t+1 − τ∗t || ≤ η||θt+1 − θt||
= ηαt|| − w̄ + τt||
≤ ηαt(|| − w̄ + τ∗t ||+ ||τt − τ∗t ||)
= ηαt(||∇L(θt)−∇L(θ∗)||

+ ||τt − τ∗t ||)
≤ η2αt||θt − θ∗||+ ηαt||τt − τ∗t ||.

In this proof, we use Lemma 1, which shows that L(θ)
is η-smooth, and the gradient ∇L(θt) = −w̄ + τ∗t . For the
second equation, we use the fact that∇L(θ∗) = 0. �

Lemma 6 Suppose that block convex BP satisfies Assump-
tion 1. Then

||τt+1 − τ∗t+1|| ≤ (1− c+ ηαt − cηαt)||τt − τ∗t ||
+(η2αt − cη2αt)||θt − θ∗||,

where 0 < c < 1.

Proof.

||τt+1 − τ∗t+1|| ≤ (1− c)||τt − τ∗t+1||
≤ (1− c)(||τt − τ∗t ||+ ||τ∗t+1 − τ∗t ||)
≤ (1− c)(||τt − τ∗t ||)

+(1− c)(ηαt||τt − τ∗t ||)
+(1− c)(η2αt||θt − θ∗||)

= (1− c+ ηαt − cηαt)||τt − τ∗t ||
+(η2αt − cη2αt)||θt − θ∗||.

In this proof, we first use Assumption 1 to upper bound
||τt+1 − τ∗t+1||, and then we use Lemma 5 to expand the
term ||τ∗t+1 − τ∗t ||. �

Step 3: Proving the Decrease
With the lemmas above, we can prove that Pt+1 ≤ (1−δ)Pt.

Based on Lemma 4 and Lemma 6, we have

Pt+1 = ||θt+1 − θ∗||+ γ||τt+1 − τ∗t+1||
≤ (1− βαt)||θt − θ∗||+ αt||τt − τ∗t ||

+γ(1− c+ ηαt − cηαt)||τt − τ∗t ||
+γ(η2αt − cη2αt)||θt − θ∗||

= (1− βαt + γ(η2αt − cη2αt))||θt − θ∗||
+(αt + γ(1− c+ ηαt − cηαt))||τt − τ∗t ||

= (1− βαt + γ(η2αt − cη2αt))(||θt − θ∗||

+
αt + γ(1− c+ ηαt − cηαt)
1− βαt + γ(η2αt − cη2αt)

||τt − τ∗t ||).

For BBPL to be linearly convergent, we need to have

1− βαt + γ(η2αt − cη2αt) < 1 (17)

and
αt + γ(1− c+ ηαt − cηαt)
1− βαt + γ(η2αt − cη2αt)

≤ γ. (18)

From Equation 17, we need to satisfy

γ <
β

(1− c)η2
. (19)

We expand Equation 18 to obtain

αt + γ(1− c+ ηαt − cηαt)
≤ γ(1− βαt + γ(η2αt − cη2αt))

⇒ αt + γηαt − cγηαt − cγ
≤ −βγαt + γ2η2αt − c2η2γ2αt

⇒ η2αt(1− c2)γ2 + (cηαt − ηαt + c− βαt)γ
− αt ≥ 0. (20)

Note that the Equation 20 is a quadratic function of γ,
with η2αt(1 − c2) > 0 and −αt < 0. Thus, it is a convex
function, and has one positive root, i.e., γ1, and one negative
root, i.e., γ2. To satisfy both Equations 19 and 20, we need
that γ1 < γ < β

(1−c)η2 . Now we set

γ =
β

2(1− c)η2
. (21)

To make the chosen γ lie in the interval above requires
that when γ = β

2(1−c)η2 , the Equation 20 is satisfied.
Substituting Equation 21 into Equation 20, we have that

η2αt(1− c2)
β2

4(1− c)2η4

+
β

2(1− c)η2
(cηαt − ηαt + c− βαt)− αt ≥ 0

⇒ (1− c2)β2

4(1− c)2η2

+
β

2(1− c)η2
(cη − η +

c

αt
− β)− 1 ≥ 0

⇒ (1 + c)β2

4(1− c)η2
− cβ

2η

+
cβ

2αt(1− c)η2
− β2

2(1− c)η2
− 1 ≥ 0

⇒ cβ

αt(1− c)η2
≥ 2 +

cβ

η
+

β2

2η2
. (22)

In the first arrow, we divide both sides of the inequality
by αt.

Note that cβ
αt(1−c)η2 ≥

cβ
αtη2

, and 2 + β
η + β2

η2 ≥ 2 + cβ
η +

β2

2η2 . To satisfy Equation 22, we can require that

cβ

αtη2
≥ 2 +

β

η
+
β2

η2
. (23)

Equation 23 is equivalent to the condition

αt ≤
cβ

2η2 + ηβ + β2
. (24)

Let

δ = βαt − γ(η2αt − cη2αt)

= βαt −
β

2(1− c)η2
(η2αt − cη2αt)

=
βαt
2
.

It is easy to prove that 0 < δ < 1, when αt satisfies Equa-
tion 24. Thus, we have that

Pt+1 ≤ (1− δ)Pt, (25)

which implies linear convergence and proves the theorem. �

Sample Segmentation Results
Since our method converges to the same optimum as the con-
vex BP, these two methods have the same segmentation re-
sults. The pixel accuracy is 80.4% on the Scene Understand-
ing dataset. Figure 6 contains some examples of segmenta-
tion results. The images are selected from the test set.

Figure 6: Example segmentation results on the Scene Un-
derstanding dataset. From left to right: the original image,
the ground-truth labels, and the predictions made by the op-
timized models.

View publication statsView publication stats

https://www.researchgate.net/publication/328878602

	Introduction
	Related Work
	Contributions

	Background
	Convex Belief Propagation for MRFs
	Learning Parameters of MRFs

	Block Belief Propagation Learning
	Algorithm Description
	Convergence Analysis
	Generalization to Templated or Conditional Models

	Empirical Study
	Experiments on Synthetic Networks
	Experiments on Image Dataset

	Conclusion
	Proof of Theorem 1
	Step 1: Bounding the Decrease of ||t - *||
	Step 2: Bounding the Decrease of ||t - t*||
	Step 3: Proving the Decrease

	Sample Segmentation Results

