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Accelerated Voltage Regulation in Multi-Phase Distribution Networks
Based on Hierarchical Distributed Algorithm

Xinyang Zhou, Zhiyuan Liu, Changhong Zhao, Lijun Chen

Abstract— We propose a hierarchical distributed algorithm to
solve optimal power flow (OPF) problems that aim at dispatching
controllable distributed energy resources (DERs) for voltage
regulation at minimum cost. The proposed algorithm features
unprecedented scalability to large multi-phase distribution net-
works by jointly exploring the tree/subtrees structure of a large
radial distribution network and the structure of the linearized
distribution power flow (LinDistFlow) model to derive a hierar-
chical, distributed implementation of the primal-dual gradient
algorithm that solves OPF. The proposed implementation signif-
icantly reduces the computation loads compared to the centrally
coordinated implementation of the same primal-dual algorithm
without compromising optimality. Numerical results on a 4,521-
node test feeder show that the designed algorithm achieves
more than 10-fold acceleration in the speed of convergence
compared to the centrally coordinated primal-dual algorithm
through reducing and distributing computational loads.

I. INTRODUCTION

OPF problems determine the best operating points of dis-
patchable devices in electric power grids and achieve the
optimal system-wide objectives and operational constraints
for important applications such as demand response and
voltage regulation. However, the increasing penetrations of
DERs such as roof-top photovoltaic, electric vehicles, battery
energy storage systems, thermostatically controlled loads, and
other controllable loads not only provide enormous potential
optimization and control flexibility that we can explore [2], but
also make OPF more challenging to solve with significantly
growing dimensionality. Meanwhile, due to the intermittent
nature of the renewable energy resources, their deepening
penetration in the distribution networks causes large and rapid
fluctuations in power injections and voltages, and calls for fast
control paradigms.

Distributed algorithms are developed to facilitate scalable
and fast control of large networks of dispatchable DERs
by parallel and distributed computation. In literature, such
algorithms have been designed and implemented either with a
central coordinator (CC), e.g., [3]–[8], or among neighbor-
ing agents without a CC, e.g., [9]–[13]. The latter usually
demands that all nodes in the network compute and pass
along updated information to their neighbors, which may not
be implementable in practice if not all nodes are controllable
or equipped with computation and communication capability.
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This paper will focus on the former communication model,
which only requires CC to communicate with controllable
nodes. However, what has been overlooked by existing liter-
ature on centrally coordinated distributed algorithms is that,
while part of the computation loads are distributed among
control nodes, the remaining that are executed by CC may
surge as the size of the problem increases. Take voltage regu-
lation problems (to be elaborated later) as an example: let N
denote the number of networked nodes, and the computational
complexity of CC is in the order of N2. When N grows,
the computational time of CC becomes exceedingly notable,
rendering CC the bottleneck and hindering fast algorithm
implementation in large systems.

One way to mitigate the computational loads of CC (and
therefore accelerate the algorithms) is to consider multiple
coordinators among which CC’s loads can be distributed.
However, due to the complexity of the coupling term cal-
culated by CC, it is usually challenging to decompose it in
an efficient and yet structurally meaningful way. To our best
knowledge, little work has been done to explore this area. In
particular, hierarchical structures have been under-exploited in
developing distributed OPF algorithms.

Moreover, realistic distribution systems are usually featured
with multi-phase unbalanced loads. The resultant multi-phase
OPF has been studied extensively in literature, e.g., [13]–
[18]. Indeed, the inter-phase coupling in multi-phase systems
adds extra difficulty to the already complex OPF problems
and makes computational load reduction and distribution even
more challenging.

This work considers a large multi-phase distribution net-
work with tree topology. We consider the linearized distribu-
tion flow (LinDistFlow) model [19]–[23] as well as its multi-
phase extension [13], [17] for the distribution networks. The
network is divided into areas featuring subtree topology. A
regional coordinator (RC) communicates with all the dispatch-
able nodes within each subtree, and CC communicates with all
RCs. Each RC knows only the topology and line parameters
of the subtree that it coordinates, and CC knows only the
topology and line parameters of the reduced network which
treats each subtree as a node. Given such information avail-
ability, we explore the topological structure of the LinDistFlow
model to derive a hierarchical, distributed implementation of
the primal-dual gradient algorithm that solves an OPF prob-
lem. The OPF problem minimizes the total cost over all the
controllable DERs and a cost associated with the total network
load subject to voltage regulation constraints. The proposed
implementation significantly reduces the computation burden
of CC compared to the centrally coordinated implementation
of the primal-dual algorithm, not only by distributing com-
putational loads among RCs but also by reducing repetitive
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calculations and information transfers. Convergence of the
designed algorithm is guaranteed with unbalanced nonlinear
power flow.

Performance of the proposed implementation is verified
through numerical simulation of a three-phase unbalanced
4,521-node test feeder with 1,043 controllable nodes. Sim-
ulation results show that a 10-fold acceleration in the speed
of convergence can be achieved by the hierarchical distributed
method compared to the centrally coordinated implementation.
This significant improvement in convergence speed makes
real-time grid optimization and control possible. Meanwhile,
to our best knowledge, the size of the network in our simula-
tion is the largest in distributed OPF studies.

It is worth noting that the model and algorithm design in
this work can be readily applied to optimization and control of
networked microgrids with each subtree seen as a microgrid.
Meanwhile, most existing works on optimization and control
of networked microgrids either over-simplify each individual
microgrid as a node without considering power flow within
it [24]–[26], or ignore power flow models among microgrids
[27]–[29]. Recent work [30] applies a game-theoretic approach
to manage a partitioned distribution network based on a
noncooperative Nash game, where uniqueness of equilibrium,
convergence, and global performance are difficult to character-
ize. Different from those in the literature, our method models
inter- and intra-microgrid power flow dynamics and features
provable convergence and global optimality performance.

Also note that, another line of works on voltage regulation
are based on local control algorithms, e.g., [22], [23], [31],
[32] and references therein. Though local voltage control
has the advantages of low computation and communication
complexity, it can only solve a limited class of problems
and cannot address more general objective functions and
constraints as formulated in this work.

The rest of the paper is organized as follows. To provide
design intuition, we start with Section II to model the single-
phase distribution system and formulate the OPF problem, and
follow with Section III to propose a hierarchical distributed
implementation of the primal-dual gradient algorithm. We
then in Section IV introduce the multi-phase distribution
system and its OPF for which we elaborate a hierarchical
distributed algorithm and characterize its convergence with
nonlinear power flow. Section V presents numerical results,
and Section VI concludes this paper.

II. SOLVING OPF IN SINGLE-PHASE SYSTEM

A. Single-Phase Power Flow Model

Consider a radial single-phase power distribution network
denoted by T “ tNYt0u, Eu with N`1 nodes collected in the
set NYt0u where N :“ t1, ...,Nu and node 0 is the slack bus,
and distribution lines collected in the set E . For each node i P
N , denote by Ei Ď E the set of lines on the unique path from
node 0 to node i, and let pi and qi denote the real and reactive
power injected, where negative (resp. positive) power injection
means power consumption (resp. generation). Let vi be the
squared magnitude of the complex voltage (phasor) at node i.
For each line pi, jq P E , denote by rij and xij its resistance

and reactance, and Pij and Qij the real and reactive power
from node i to node j. Let `ij denote the squared magnitude
of the complex branch current (phasor) from node i to j.

We adopt the following DistFlow model [19], [20] for the
radial distribution network:

Pij “ ´pj `
ÿ

k:pj,kqPE

Pjk ` rij`ij , (1a)

Qij “ ´qj `
ÿ

k:pj,kqPE

Qjk ` xij`ij , (1b)

vj “ vi ´ 2
`

rijPij ` xijQij
˘

`
`

r2
ij ` x

2
ij

˘

`ij , (1c)

`ijvi “ P 2
ij `Q

2
ij . (1d)

Following [21], [22] we assume that the active and reactive
power loss rij`ij and xij`ij , as well as r2

ij`ij and x2
ij`ij , are

negligible and can thus be ignored. Indeed, the losses are much
smaller than power flows Pij and Qij , typically on the order
of 1%. With the above approximations (1) is simplified to the
following linear model:

v “ Rp`Xq ` ṽ, (2)
where bold symbols v “ rv1, . . . , vN s

J, p “ rp1, . . . , pN s
J,

q “ rq1, . . . , qN s
J P RN represent vectors, ṽ is a constant

vector with every component being the squared voltage mag-
nitude at the slack bus, and the sensitivity matrices R,X P

RNˆN` respectively contain elements of

Rij :“
ÿ

pζ,ξqPEiXEj

2 ¨ rζξ, Xij :“
ÿ

pζ,ξqPEiXEj

2 ¨ xζξ. (3)

Here, the voltage-to-power-injection sensitivity factors Rij
(resp. Xij) represents the resistance (resp. reactance) of the
common path of node i and j leading back to node 0. Keep
in mind that this result serves as the basis for designing the
hierarchical distributed algorithm to be introduced later. Fig. 1
(left) illustrates the common path Ei X Ej for two arbitrary
nodes i and j in a radial network and their Rij ,Xij .

Fig. 1: (Left) Ei X Ej for two arbitrary nodes i, j in
the network and their mutual voltage-to-power-injection
sensitivity factors Rij ,Xij . (Right) Unclustered nodes and
root nodes of subtrees along with their connecting lines
constitute the reduced network. Two subtrees Th and Tk
share the same common Rij and Xij for any of their
respective nodes i and j.

B. OPF and Primal-Dual Gradient Algorithm

Assume node i P N has a dispatchable DER (or aggrega-
tion of DERs) whose real and reactive power injections are
confined by ppi, qiq P Yi where Yi is a convex and compact
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set. For example, the feasible region of a PV inverter can be
modeled as:

Yi “
 

ppi, qiq
ˇ

ˇ0 ď pi ď pav
i , p2

i ` q
2
i ď η2

i

(

,

where pav
i denotes the available active power from a PV

system (based on prevailing ambient conditions), and ηi is the
rated apparent capacity. The feasible set for an energy storage
system can be modeled as

Yi “
!

ppi, qiq
ˇ

ˇp
i
ď pi ď pi, p

2
i ` q

2
i ď η2

i

)

,

for given limits p
i
, pi and for a given inverter capacity rating

ηi. The limits p
i
, pi are updated during the operation of the

battery based on the state of charge. The operating region of
small-scale diesel generators can be modeled using constant
box constraints

Yi “
!

ppi, qiq
ˇ

ˇp
i
ď pi ď pi, qi ď qi ď qi

)

.

Let P0 denote active power injected into the feeder at node
0, which is linearly approximated by the total active power
loads as

P0 “ ´PI ´
ÿ

iPN
pi, (4)

where PI denotes the total uncontrollable (inelastic) power
injection in the network. Use vpp, qq and P0ppq to represent
(2) and (4), respectively, and consider the following OPF
problem:

min
p,q

ÿ

iPN
Cippi, qiq ` C0pP0ppqq, (5a)

s.t. v ď vpp, qq ď v, (5b)
ppi, qiq P Yi,@i P N , (5c)

where the objective Cippi, qiq is the cost function for node i
and the coupling term C0pP0ppqq represents the cost associ-
ated with the total network load. For example, C0pP0ppqq “
αpP0ppq´P̃0q

2 penalizes P0ppq’s deviation from a dispatching
signal P̃0 from the bulk system operator, where α ą 0 is a
given weighting factor. We make the following assumption for
these cost functions.

Assumption 1 Cippi, qiq, @i P N are continuously differen-
tiable and strongly convex in ppi, qiq, with bounded first-order
derivative in Yi; C0pP0q is continuously differentiable and
convex with bounded first-order derivative.

Associate dual variables µ and µ with the left-hand-side
and the right-hand-side of (5b), respectively, to write the
Lagrangian of (5) as:

Lpp, q;µ,µq “
ÿ

iPN
Cippi, qiq ` C0pP0ppqq

`µJpv ´ vpp, qqq ` µJpvpp, qq ´ vq, (6)
with (5c) treated as the domain of pp, qq.

In order to design an algorithm with provable convergence,
we introduce the following regularized Lagrangian with pa-
rameter η ą 0 and µ :“ rµJ,µJsJ:

Lηpp, q;µ,µq “
ÿ

iPN
Cippi, qiq ` C0pP0ppqq

`µJpv ´ vpp, qqq ` µJpvpp, qq ´ vq ´
η

2
}µ}22. (7)

Since Lηpp, q;µ,µq is strongly convex in p, q and strongly
concave in µ,µ, the next result follows.

Theorem 1 There exists one unique saddle point
pp˚, q˚;µ˚,µ˚q of Lη .

Furthermore, the discrepancy due to the regularization term
can be bounded and is proportional to η. We refer the details to
[7], [33]. For the rest of this section, we will focus on solving
the saddle point of the regularized Lagrangian (7). Specifically,
we cast the iterative projected primal-dual gradient algorithm
to find the saddle point of (7) as follows:

ppt` 1q“
”

pptq ´ ε
´

∇pCppptq,qptqq´C 10pP0ptqq¨1N

`RJpµptq ´ µptqq
¯ı

Y
, (8a)

qpt` 1q“
”

qptq ´ ε
´

∇qCppptq, qptqq
`XJpµptq ´ µptqq

¯ı

Y
, (8b)

µpt` 1q“
“

µptq ` εpv ´ vptq ´ ηµptqq
‰

`
, (8c)

µpt` 1q“
“

µptq ` εpvptq ´ v ´ ηµptqq
‰

`
, (8d)

vpt` 1q“Rppt` 1q `Xqpt` 1q ` ṽ, (8e)

P0pt` 1q“´PI ´
ÿ

iPN
pipt` 1q, (8f)

where ε ą 0 is a constant stepsize to be determined, 1N “

r1, . . . , 1sJ P RN , r sY is the projection operator onto feasible
sets Y :“

Ś

iPN Yi, and r s` is the projection operator onto
the positive orthant.

C. Convergence Analysis

For uncluttered notation, we use y :“ rpJ, qJsJ to stack
the primal variables and equivalently rewrite (8) as follows:
„

ypt` 1q
µpt` 1q



“

„„

yptq
µptq



´ ε

„

∇yLηpyptq,µptqq
´∇µLηpyptq,µptqq



YˆU
, (9)

where U denotes the feasible positive orthant for the dual
variables. We further let z :“ ryJ,µJsJ stack all variables,

and define the gradient operator T pzq :“

„

∇yLηpy,µq
´∇µLηpy,µq



.

Lemma 1 T pzq is a strongly monotone operator.

We refer to Appendix for the proof.
By Lemma 1, there exists some constant M ą 0 such that

for any z, z1 P Y ˆ U , one has
pT pzq ´ T pz1qqJpz ´ z1q ěM}z ´ z1}22. (10)

Moreover, based on Assumption 1 the operator T pzq is also
Lipschitz continuous, i.e., there exists some constant L ą 0
such that for any z, z1 P Y ˆ U , we have

}T pzq ´ T pz1q}22 ď L2}z ´ z1}22. (11)

Lemma 2 The following relation holds: M ď L.

Proof: Apply (11) to have
pT pzq ´ T pz1qqJpz ´ z1q ď }T pzq ´ T pz1q}2}z ´ z

1}2

ď L}z ´ z1}22. (12)
Combine (10) and (12) to obtain the result.

Based on the results established so far, we present the next
theorem that guarantees the convergence of the primal-dual
gradient algorithm (9) with small enough stepsize.

Theorem 2 If the stepsize ε satisfies

0 ă ε ď ε ă 2M{L2 (13)
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for some ε, (9) converges to the unique saddle point of (7)
exponentially fast.

We refer to Appendix for the proof.

D. Motivation for Hierarchical Design

Note that in (8) the update of any pi (resp. qi) involves the
knowledge of

ř

jPN Rijpµj´µjq (resp.
ř

jPN Xijpµj´µjq).
Therefore, at each iteration a coordinator cognizant of the
entire network’s sensitivity matrices R and X is required
to collect updated dual variables from all nodes, calculate
RJpµ´µq and XJpµ´µq, and send back the corresponding
result to every node. This becomes computationally more
challenging in a larger network containing thousands of or
even more controllable endpoints, not to mention the re-
calculation of the large R,X matrices in case changes in
network topology or regulator taps occur.

This motivates us to design a hierarchical control structure
where the large network is partitioned into smaller subtrees,
each managed locally by its regional coordinator (RC), and
there is a central coordinator (CC) that only manages a reduced
network where each subtree is treated as one node. As we
will show in next section, the hierarchical control not only
distributes but also reduces a large amount of computation
overall.

III. HIERARCHICAL DISTRIBUTED ALGORITHM

In this section, we explore the tree structure of the distri-
bution network as well as the construction of its sensitivity
matrices to facilitate the design of an efficient hierarchical
distributed algorithm. To this end, we formally define subtree
as follows.

Definition 1 A subtree of a tree T is a tree consisting of a
node in T , all its descendants in T , and their connecting lines.

We categorize all nodes of distribution network T into
two groups: 1) K subtrees indexed by Tk “ tNk, Eku, k P
K “ t1, . . . ,Ku, and 2) a set N0 collecting all the other
“unclustered” nodes in N . Here, Nk of size Nk is the set of
nodes in subtree Tk and Ek contains their connecting lines.
Thus we have YkPKNk Y N0 “ N Y t0u and Nj X Nk “

H,@j ‰ k. Assume each subtree Tk is managed by an RC
cognizant of the topology of Tk and communicating with all
the controllable nodes within Tk.

Denote the root node of subtree Tk by n0
k, and consider

a reduced network T r “ tN r Y t0u, Eru where N r :“
YkPKtn

0
kuYN0 consists of the root nodes of all subtrees and

all the unclustered nodes, and Er is the set of their connecting
lines. We assume there to be a CC cognizant of the topology
of the reduced network T r and communicating with all the
RCs as well as the unclustered nodes.

A. Hierarchical Distributed Algorithm

For simplicity, we elaborate the algorithm design for real
power injections p only, and that for q follows similarly.

Fig. 2: The sensitivity matrix has block structure such that
all nodes within one subtree Nh share the same sensitivity
with respect to all nodes within another subtree Nk. For
simplicity, the set of unclustered nodes N0 is assumed to
be empty in this illustration.

We equivalently rewrite (8a) as:

pipt` 1q “
”

piptq ´ ε
´

BpiCippiptq, qiptqq ´ C
1
0pP0ptqq

`
ÿ

jPN
Rij

`

µjptq ´ µjptq
˘

¯ı

Yi
, i P N . (14)

Note that in (14) while BpiCippiptq, qiptqq is local information
and the scalar derivative C 10pP0ptqq can be easily broadcast,
the last term

ř

jPN Rijpµjptq ´ µ
j
ptqq couples the entire

network. How to efficiently compute the coupling term is the
key to a scalable algorithm. For that purpose, we introduce
the following lemma.

Lemma 3 Given any two subtrees Th and Tk with their root
nodes n0

h and n0
k, we have Rij “ Rn0

hn
0
k
,Xij “ Xn0

hn
0
k
, for

any i P Nh, and any j P Nk. Similarly, given any unclustered
node i P N0 and a subtree Tk with its root node n0

k, we have
Rij “ Rin0

k
,Xij “ Xin0

k
, for any j P Nk.

Proof: We have the two following facts, which are also
illustrated in Fig. 1. First, by (3), Rij (resp. Xij) is the
summed resistance (resp. reactance) on the common path of
node i and j leading back to node 0. Second, any node in one
subtree and any node in another subtree (or any node in one
subtree and one unclustered node) share the same common
path back to node 0. The result follows immediately.

Lemma 3 indicates that the sensitivity matrices R and X
possess block structure such that all nodes within one subtree
Nh share the same sensitivity with respect to all nodes within
another subtree Nk; see Fig. 2 for illustration. This permits a
hierarchical distributed way to recalculate the coupling terms.

For clustered node i P Nk, we decompose
ř

jPN Rijpµj´
µ
j
q as:

ÿ

jPNk

Rijpµj ´ µjq `
ÿ

jPN zNk

Rijpµj ´ µjq

“
ÿ

jPNk

Rijpµj ´ µjq `
ÿ

hPK,h‰k

Rn0
hn

0
k

ÿ

jPNh

pµj ´ µjq

`
ÿ

jPN0

Rn0
kj
pµj ´ µjq, (15)

where the first term of (15) consists of information within
subtree k (together with the line parameter from n0

k to bus
0, i.e., Rn0

kn
0
k

and Xn0
kn

0
k
, which can be informed by CC),

the second from all the other subtrees, and the third from
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the unclustered nodes. For convenience, denote by αi “
ř

jPN Rijpµj ´ µjq “ αin
k,i ` α

out
k with αin

k,i denoting the first
term in (15) and αout

k,i the summation of the second and third
terms in (15). Note that for i P Nk, αin

k,i is accessible by RC k
cognizant of the topology of subtree k, and that αout

k does not
involve the network structure of any other subtrees but only
that of the reduced network T r known by CC.

For unclustered node i P N0, similarly we can decompose
ř

jPN Rijpµj ´ µjq as
ÿ

kPK
Rin0

k

ÿ

jPNk

pµj ´ µjq `
ÿ

jPN0

Rijpµj ´ µjq, (16)

whose computation only requires the topology and line pa-
rameters of the reduced network T r coordinated by CC.

Eqs. (15)–(16) motivate us to design a hierarchical dis-
tributed implementation of the primal-dual gradient algo-
rithm (8), where CC and RCs are in charge of only a portion of
the whole system: CC manages the reduced network T r and
coordinates RCs as well as unclustered nodes without knowing
any structural or node-wise information within subtrees, and
each RC k manages its own subtrees Tk without knowing
structural or node-wise information of the other subtrees or
the reduced network. This also leads to a secure and privacy-
preserving design such that regional topology and node-wise
information are both protected.

We refer the detailed presentation of the single-phase hi-
erarchical algorithm to [1] as its structure is similar to the
multi-phase algorithm to be introduced later.

B. Complexity Reduction

The hierarchical implementation not only enables parallel
computation of the coupling terms in the gradient algorithm,
but also largely reduces computational loads and communica-
tion overhead due to the following two reasons:
‚ The term

ř

hPK,h‰k Rn0
hn

0
k

ř

jPNhpµj´µjq requires less
computation than the original

ř

jPNh,h‰k Rijpµj ´ µjq;
‚ The intermediate computation result αout

k is the same
for all the nodes in Nk, reducing a lot of repetitive
computations.

1) Computational Complexity Characterization: We com-
pare the computational complexity in calculating the coupling
term RJpµ ´ µq by centrally coordinated algorithm and
hierarchical distributed algorithm as follows.
‚ Centrally coordinated algorithm takes N2 multiplications

and NpN ´ 1q additions leading to total complexity of
OpN2q.

‚ For hierarchical distributed algorithm, computational
complexity for general network and clustering strategy
is challenging to characterize. We instead make sim-
plification and provide intuitions on the computational
reduction under the following ideal topological and clus-
tering scenario: Assume that all N nodes with voltage
constraints are equally clustered into K subtrees, each
with Nk “ N{K nodes. This also ignores the third term
in (15).
(a) To calculate (15) for all i P Nk, each RC performs

N2
k multiplications and NkpNk´1q additions for the

Fig. 3: Multi-level control where sub-subtrees are marked
by hexagons within each subtree.

first term, Nk´1 additions for the second term, and
Nk additions to add the two terms. This results in
2N2

k`Nk´1 operations for each RC and Kp2N2
k`

Nk ´ 1q for all RCs.
(b) CC performs K2 multiplications and pK ´ 1qK

additions to put the second term of (15) together.
(c) Adding up the results of last two steps and using

N “ KNk lead to a total of 2N2{K ` N ` 2K2

operations (ignoring lower-order terms in K).
(d) Apparently the computation depends on the choice

of K, e.g., when K “ 1 or K “ N , the clustering
is trivial and there is no computational reduction.
When we choose K “ pN2{2q1{3, the total com-
putation burden is minimized to OpN4{3q, largely
decreased from OpN2q.

Though in practice such ideal topological and clustering
structure is uncommon, a simple geographical or administra-
tive clustering strategy will nevertheless reduce a significant
amount of computation. As will be shown in Section V, a 4-
subtree clustering of the original network gives us a 4-fold
acceleration in convergence speed by reducing computational
loads. How to optimally cluster a distribution network remains
an open question for our future work.

C. Multi-Level Distributed Control

In large distribution systems, one subtree may still con-
tain too many nodes to be handled efficiently. Meanwhile,
some smaller areas within subtrees may want to shelter their
topology and node-wise information from RC or CC, e.g., for
security concerns.

This as well as the fractal structure of tree topology moti-
vates us to consider deeper clustering and multi-level control,
i.e., to apply similar approaches to cluster nodes within a
subtree into smaller “sub-subtrees”, as illustrated in Fig. 3.
Mathematically, this is done by decomposing αin

k,i in the same
as we do with αi in (15). Even deeper clustering can be done
likewise if necessary. We omit further details here.

IV. MULTI-PHASE SYSTEM HIERARCHICAL CONTROL

Given the intuitions built up from previous sections, we are
now ready to design hierarchical distributed algorithms for
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multi-phase systems.

A. Multi-Phase System Modeling and OPF Formulation

Define i :“
?
´1. Let a, b, c denote the three phases, and

Φi the set of phase(s) of node i P N , e.g., Φi “ ta, b, cu for a
three-phase node i, and Φj “ tbu for a single b-phase node j.
Also, in a three-phase system one usually has Φ0 “ ta, b, cu.
Define N φ Ď N the subset of N collecting nodes that have
phase φ. Denote by pφi , qφi , V φi and vφi the real power injection,
the reactive power injection, the complex voltage phasor, and
the squared voltage magnitude, respectively, of node i P N at
phase φ P Φi. Denote by NΞ :“

ř

iPN |Φi| “
ř

φPΦ0
|N φ| the

total cardinality of the multi-phase system, where |¨| calculates
the cardinality of a set. We make the following assumptions
to obtain a linearized power flow model for the multi-phase
system.

Assumption 2 We consider a multi-phase distribution net-
work where

1) the line losses are small and ignored, and
2) the magnitudes of three-phase voltages are approxi-

mately equal and the phase differences among three-
phase voltages are close to 2π{3, i.e., V ai

V bi
«

V bi
V ci

«

V ci
V ai
« ei2π{3.

Let zζξ be the phase impedance matrix of line pζ, ξq P E .
For example, if line pζ, ξq has three phases,

zζξ “

»

–

zaaζξ zabζξ zacζξ
zbaζξ zbbζξ zbcζξ
zcaζξ zcbζξ zccζξ

fi

fl P C3ˆ3,

where the off-diagonal elements represent mutual impedance
between two phases. Similar to Rij and Xij defined in Eq. (3),
we define

Zϕφij “
ÿ

pζ,ξqPEiXEj

zϕφζξ P C (17)

the summarized impedance (if ϕ “ φ) or the mutual
impedance (if ϕ ‰ φ) of the common path of node i and
j leading back to node 0, and Z

ϕφ

ij its conjugate.
We denote by v

Ξ
“ rrvφ1 s

J
φPΦ1

, . . . , rvφN s
J
φPΦN

sJ P

RNΞ the multi-phase squared voltage magnitude vector, and
pΞ “ rrpφ1 s

J
φPΦ1

, . . . , rpφN s
J
φPΦN

sJ P RNΞ and qΞ “

rrqφ1 s
J
φPΦ1

, . . . , rqφN s
J
φPΦN

sJ P RNΞ the multi-phase power
injection vectors. We then extend the linearization (2) to its
multi-phase counterpart written as

v
Ξ
“ R

Ξ
p

Ξ
`X

Ξ
q

Ξ
` ṽ

Ξ
, (18)

where ṽ
Ξ
P RNΞ is a constant vector depending on squared

voltage magnitudes at all phases of the slack bus, and the
voltage-to-power sensitivity matrices R

Ξ
,X

Ξ
P RNΞˆNΞ are

determined by the linear approximation method developed for
multi-phase system [13], [17]. The elements of RΞ ,XΞ are
calculated as follows (we use a “ 0, b “ 1, and c “ 2 when
calculating φ´ ϕ):

Bpφj
vϕi “ 2Re

 

Z
ϕφ

ij ¨ ω
ϕ´φ

(

, (19a)

Bqφj
vϕi “ ´2Im

 

Z
ϕφ

ij ¨ ω
ϕ´φ

(

, (19b)

for any ϕ P Φi, φ P Φj , i, j P N , with ω “ e´i2π{3 and Ret¨u
and Imt¨u denoting the real part and the imaginary part of a
complex number. Note that when ϕ “ φ, Eqs. (19) coincide
with Rij and Xij in Eqs. (3) for any nodes i, j P N ; other-
wise, Eqs. (19) calculate the summarized mutual impedance—
rotated by phase difference ˘2π{3—of the common path of
nodes i, j P N leading back to node 0.

We further extend Eq. (4) to its multi-phase counterpart as

P0 “ ´
ÿ

φPΦ0

PφI ´
ÿ

iPN

ÿ

φPΦi

pφi , (20)

where PφI is the total uncontrollable (inelastic) power injection
at phase φ P Φ0. We use vΞppΞ , qΞq and P0ppΞq to represent
Eqs. (18) and (20), and formulate the OPF problem for the
multi-phase system as follows:

min
p

Ξ
,q

Ξ

ÿ

iPN

ÿ

φPΦi

Cφi pp
φ
i , qφi q ` C0pP0ppΞ

qq, (21a)

s.t. vφi ď vφi ppΞ , qΞq ď vφi ,φ P Φi,@i P N , (21b)

ppφi , qφi q P Y
φ
i ,φ P Φi,@i P N . (21c)

Associate dual variables µ
Ξ

and µ
Ξ

with (21b) and we write
the regularized Lagrangian of (21) as:

LΦ
η ppΞ

, q
Ξ
;µ

Ξ
,µ

Ξ
q “

ÿ

iPN

ÿ

φPΦi

Cφi pp
φ
i , qφi q ` C0pP0ppΞ

qq

`µJ
Ξ
pv

Ξ
´ v

Ξ
pp

Ξ
, q

Ξ
qq ` µJ

Ξ
pv

Ξ
pp

Ξ
, q

Ξ
q ´ v

Ξ
q ´

η

2
}µ

Ξ
}22.

Note that the multi-phase sensitivity matrices R
Ξ

and X
Ξ

in Eqs. (19) have the similar structure as their single-phase
counterparts R and X defined in Eqs. (3), i.e., the values
of Bpϕj v

φ
i and Bqϕj v

φ
i for any i, j P N only depend on the

common path of i and j leading back to node 0, as well as their
angle difference φ´ ϕ. This motivates us to design a similar
hierarchical control structure for the multi-phase system.

B. Multi-Phase Hierarchical Distributed Algorithm

The primal-dual gradient algorithm for solving the regu-
larized Lagrangian of the convex optimization problem (21)
reads:
pφi pt` 1q “

”

pφi ptq ´ ε
´

Bpφi
Cφi pp

φ
i ptq, q

φ
i ptqq ´

C 10pP0ptqq̀
ÿ

jPN

ÿ

ϕPΦj

Bpφi
vϕj

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯ı

Yφi
, (22a)

qφi pt` 1q “
”

qφi ptq ´ ε
´

Bqφi
Cφi pp

φ
i ptq, q

φ
i ptqq `

ÿ

jPN

ÿ

ϕPΦj

Bqφi
vϕj

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯ı

Yφi
, (22b)

µφ
i
pt` 1q “ rµφ

i
ptq ` εpvφi ´ v

φ
i ptq ´ ηµ

φ
i
ptqqs`, (22c)

µφi pt` 1q “ rµφi ptq ` εpv
φ
i ptq ´ v

φ
i ´ ηµ

φ
i ptqqs`, (22d)

v
Ξ
pt` 1q “ R

Ξ
p

Ξ
pt` 1q `X

Ξ
q

Ξ
pt` 1q ` ṽ

Ξ
, (22e)

P0pt` 1q “ ´
ÿ

φPΦ0

PφI ´
ÿ

iPN

ÿ

φPΦi

pφi pt` 1q, (22f)

where (22a)–(22d) are for all φ P Φi and all i P N . One can
obtain similar results as in Theorem 1–2 for the Lagrangian
LΦ
η and the primal-dual gradient algorithm (22). We omit the

details here to avoid repetition.
Note that the last terms in the primal update steps (22a)–

(22b) not only couple all nodes but also multiple phases
together. Nevertheless, similar to Eq. (15), we can decompose
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the coupling terms based on Eqs. (17)–(19) along with the
radial topology of the network. To this end, we consider the
same subtree structure and notations defined in Section III. We
use real power updates for illustration.

For clustered node i P Nk, we have the following
decomposition for any φ P Φi:

2
ÿ

jPN

ÿ

ϕPΦj

Re
 

Z
ϕφ

ji ω
ϕ´φ

(

¨
`

µϕj ptq ´ µ
ϕ
j
ptq

˘

“ 2Re
!

ÿ

ϕPΦ0

ωϕ´φ
ÿ

jPNϕ

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

)

(23)

“ 2Re
!

ÿ

ϕPΦ0

ωϕ´φ
´

ÿ

jPNϕXNk

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXp Y
hPK,h‰k

Nhq

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXN0

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯)

“ 2Re
!

ÿ

ϕPΦ0

ωϕ´φ
´

ÿ

jPNϕXNk

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

n0
hPN

ϕ

hPK,h‰k

Z
ϕφ

n0
hn

0
k

ÿ

jPNϕXNh

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXN0

Z
ϕφ

jn0
k

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯)

, (24)

with Zϕφ
n0
hn

0
k
“

ř

pζ,ξqPE
n0
k
XE

n0
h

zϕφζξ summarizing the (mutual)

impedance on the common path of subtree h and subtree
k and Zϕφ

jn0
k
“

ř

pζ,ξqPEjXE
n0
k

zϕφζξ summarizing the (mutual)

impedance on the common path of unclustered node j and
subtree k.

For unclustered node i P N0,@φ P Φi, similarly we have:

2
ÿ

jPN

ÿ

ϕPΦj

Re
 

Z
ϕφ

ji ω
ϕ´φ

(

¨
`

µϕj ptq ´ µ
ϕ
j
ptq

˘

“ 2Re
!

ÿ

ϕPΦ0

ωϕ´φ
´

ÿ

n0
kPN

ϕ

kPK

Z
ϕφ

n0
ki

ÿ

jPNϕXNk

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXN0

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯)

. (25)

One can apply similar approaches to obtain the decomposed
results to update reactive power injections. Then the resultant
equivalent form of Eqs. (22) can be implemented in a hier-
archical distributed way with the collaboration of RCs and
CC. We summarize the resultant algorithm for multi-phase
systems based on the primal-dual gradient algorithm (22) and
the decomposition strategies (24)–(25) in Algorithm 1 where
we use sφi ptq “ αφi ptq ` iβφi ptq for notational simplicity. We
also use sφout

k and sφin
k,i to denote the parts of sφi ptq that are cal-

culated outside of subtree k and within subtree k, respectively.
See Fig. 4 for an illustration of clustering and information
flows in Algorithm 1. Due to their mathematical equivalence,
Algorithm 1 and Eqs. (22) share the same dynamic properties,
which will also be illustrated in Section V.

C. Nonlinear Power Flow Analysis

In this part, we implement Algorithm 1 with nonlinear
power flow, which can be either balanced or unbalanced,
and characterize its performance. To this end, we denote the

Fig. 4: 11000-node test feeder constructed from an IEEE
8500-node test feeder and a modified EPRI Test Circuits
Ckt7. Four subtrees are formed for our experiments.

voltage magnitudes and the total active power loads updated by
the nonlinear multi-phase power flow equations by pv̂

Ξ
, P̂0q “

Fpp
Ξ
, q

Ξ
q, where the nonlinear power flow F can be updated

based on some specific model from literature or can be
measured from physical power flow.

Assumption 3 The discrepancy between the linearized model
and the nonlinear model is bounded, i.e., there exists some
constants e1, e2 ą 0 such that given any ppΞ , qΞq P Y we
have

}v
Ξ
pp

Ξ
, q

Ξ
q ´ v̂

Ξ
pp

Ξ
, q

Ξ
q}2 ď e1,

|P0ppΞ
q ´ P̂0ppΞ

, q
Ξ
q| ď e2.

Similar to Section II-C, we define µ
Ξ

:“ rµJ
Ξ

,µJ
Ξ
sJ and

z
Ξ

:“ rpJ
Ξ

, qJ
Ξ

,µJ
Ξ
sJ to equivalently rewrite the primal-dual

gradient dynamics (22) as
z

Ξ
pt` 1q “ rz

Ξ
ptq ´ εT

Ξ
pz

Ξ
ptqqsYˆU, (34)

with its gradient operators denoted by

T
Ξ
pz

Ξ
q :“

„

∇y
Ξ
LΦ
η pyΞptq,µΞptqq

´∇µ
Ξ
LΦ
η pyΞptq,µΞptqq



.

Note that Lipschitz continuity and strong monotonicity hold
for T

Ξ
pz

Ξ
q with positive constants L

Ξ
and M

Ξ
for any feasible

z
Ξ
, z1

Ξ
as follows:

pT
Ξ
pz

Ξ
q ´ T

Ξ
pz1

Ξ
qqJpz

Ξ
´ z1

Ξ
q ěM

Ξ
}z

Ξ
´ z1

Ξ
}22, (35a)

}TΞpzΞq ´ TΞpz
1

Ξ
q}22 ď L2

Ξ
}zΞ ´ z

1

Ξ
}22, (35b)

MΞ ď LΞ . (35c)

To implement the gradient algorithm with nonlinear power
flow, we replace C 10pP0ptqq in (22a) with C 10pP̂0ptqq, v

φ
i ptq in

(22c)–(22d) with v̂φi ptq, and (22e)–(22f) with pv̂Ξpt`1q, P̂0pt`
1qq “ FppΞpt ` 1q, qΞpt ` 1qq. In other words, the values
of v̂

Ξ
, P̂0 are updated by the nonlinear power flow while the

gradient of v̂
Ξ
, P̂0 with respect to decision variables are calcu-

lated based on the linearized model (18)–(20). Similar model-
based feedback control has been applied and characterized
with provable performance in recent literature, e.g., [3], [7],
[34].

We denote the gradient operator with nonlinear power flow
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Algorithm 1 Hierarchical Distributed Voltage Regulation for Multi-Phase Distribution Netoworks
repeat

[1] node i P N sets αφi ptq “ Retsφi ptqu,β
φ
i ptq “ ´Imts

φ
i ptqu, and updates ppφi pt` 1q, qφi pt` 1qq for all φ P Φi by

pφi pt` 1q “ rpφi ptq ´ εpBpφi
Cφi pp

φ
i ptq, q

φ
i ptqq ´ C

1
0pP0ptqq ` α

φ
i ptqqsYφi

, (26a)

qφi pt` 1q “ rqφi ptq ´ εpBqφi
Cφi pp

φ
i ptq, q

φ
i ptqq ` β

φ
i ptqqsYφi

, (26b)

and pµφ
i
pt` 1q,µφi pt` 1qq for all φ P Φi based on local voltage magnitude by

µφ
i
pt` 1q “ rµφ

i
ptq ` εpvφi ´ v

φ
i ptq ´ ηµ

φ
i
ptqqs`, (27a)

µφi pt` 1q “ rµφi ptq ` εpv
φ
i ptq ´ v

φ
i ´ ηµ

φ
i ptqqs`. (27b)

[2] RC k P K sends
ř

jPNϕXNk

`

µϕj ptq ´ µϕ
j
ptq

˘

,@ϕ P Φn0
k

to CC, and unclustered node j P N0 sends
`

µϕj ptq ´

µϕ
j
ptq

˘

,@ϕ P Φj to CC.
[3] CC computes within the reduced network @φ P Φ0:

sφout
k pt` 1q “ 2

ÿ

ϕPΦ0

ωϕ´φ
´

ÿ

n0
hPN

ϕ

hPK,h‰k

Z
ϕφ

n0
hn

0
k

ÿ

jPNϕXNh

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXN0

Z
ϕφ

jn0
k

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯

, @k P K, (28)

sφi pt` 1q “ 2
ÿ

ϕPΦ0

ωϕ´φ
´

ÿ

n0
kPN

ϕ

kPK

Z
ϕφ

n0
ki

ÿ

jPNϕXNk

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

`
ÿ

jPNϕXN0

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

¯

, @i P N0, (29)

and sends rsφout
k pt` 1qsJφPΦ0

to RC k P K, and rsφi pt` 1qsJφPΦ0
to node i P N0.

[4] RC k P K calculates sφin
k,i and sφi within subtree k, @i P Nk, @φ P Φi by

sφin
k,ipt` 1q “ 2

ÿ

ϕPΦ0

ωϕ´φ
ÿ

jPNϕXNk

Z
ϕφ

ji

`

µϕj ptq ´ µ
ϕ
j
ptq

˘

, (30)

sφi pt` 1q “ sφin
k,ipt` 1q ` sφout

k pt` 1q, (31)

and sends rsφi pt` 1qsJφPΦi to node i P Nk.
[5] v

Ξ
pt` 1q and P0pt` 1q are updated by:

v
Ξ
pt` 1q “ R

Ξ
p

Ξ
pt` 1q `X

Ξ
q

Ξ
pt` 1q ` ṽ

Ξ
, (32)

P0pt` 1q “ ´
ÿ

φPΦ0

PφI ´
ÿ

iPN

ÿ

φPΦi

pφi pt` 1q. (33)

[6] CC computes/measures P0pt` 1q at the substation and broadcasts C 10pP0pt` 1qq.
until stopping criterion is met (e.g., |Pφ0 pp

φpt` 1qq ´ Pφ0 pp
φptqq| ă σ, @φ P Φ0 for some small σ ą 0)

by T̂ΞpzΞq, and the resultant projected gradient algorithm as:

z
Ξ
pt` 1q “

”

z
Ξ
ptq ´ εT̂

Ξ
pz

Ξ
q

ı

YˆU
. (36)

Based on Assumption 3 and Lipschitz continuity of our
gradient operator, we must have

}TΞpzΞq ´ T̂ΞpzΞq}
2
2 ď ρ (37)

for some constant ρ ą 0. We characterize the convergence of
dynamics (36) next.

Theorem 3 Under Assumptions 1–3 and a stepsize ε chosen
according to

0 ă ε ď ε̄ ă 2M
Ξ
{L2

Ξ
(38)

for some ε̄, dynamics (36) converges to the saddle point z˚
Ξ

of
LΦ
η as

lim
tÑ8

sup }zΞptq ´ z
˚

Ξ
}22 “

ρ

2M
Ξ
{ε´ L2

Ξ

. (39)

Proof: The distance between z
Ξ
pt ` 1q and z˚

Ξ
can be

calculated as:
}zΞpt` 1q ´ z˚

Ξ
}22

ď }z
Ξ
ptq ´ εT̂ pz

Ξ
ptqq ´ z˚

Ξ
` εT pz˚

Ξ
q}22

“ }z
Ξ
ptq ´ εT pz

Ξ
ptqq ` εT pz

Ξ
ptqq ´ εT̂ pz

Ξ
ptqq

´z˚
Ξ
` εT pz˚

Ξ
q}22

ď }zΞptq ´ εT pzΞptqq ´ z
˚

Ξ
` εT pz˚

Ξ
q}22 ` ε

2ρ

“ }zptq ´ z˚}22 ` }εT pzptqq ´ εT pz
˚q}22

´2εpzptq ´ z˚qJpT pzptqq ´ T pz˚qq ` ε2ρ.

ď ∆}zptq ´ z˚}22 ` ε
2ρ

ď ∆t}zp1q ´ z˚}22 ` ε
2ρ

1´∆t

1´∆
with ∆ “ 1` ε2L2

Ξ
´ 2εMΞ . In the above, the first inequality

comes from non-expansiveness of projection operator, the
second from (37), the third from (35a)–(35b), and the last
inequality is obtained by recursively executing previous steps.
Then based on (35c) and condition (38) one has 0 ă ∆ ď

∆̄ ă 1 for some ∆̄ such that when tÑ8, (39) follows.

Theorem 3 indicates that, despite the discrepancy introduced
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Fig. 5: The hierarchical distributed algorithm (left) and
the centrally coordinated algorithm (right) show identical
convergence dynamics under the same setup.

by linear and nonlinear power flows, dynamics (36) converges
to the saddle point of LΦ

η with bounded distance ρ
2M

Ξ
{ε´L2

Ξ

.
Therefore, given any accuracy requirement δ ą 0, if stepsize
is chosen such that ε ă mint

2M
Ξ
δ

ρ`L2
Ξ
δ ,

2M
Ξ

L2
Ξ

u, we have

lim
tÑ8

sup }z
Ξ
ptq ´ z˚

Ξ
}22 ă δ. (40)

V. NUMERICAL RESULTS

A three-phase unbalanced, 11,000-node test feeder is con-
structed by connecting an IEEE 8,500-node test feeder and
a modified EPRI Ckt7 test feeder at the substation. Fig. 4
shows the single-line diagram of the feeder with its line width
proportional to the nominal power flow on it. The primary
side of the feeder is modeled in detail, while the loads on
the secondary side are lumped into corresponding distribution
transformers, resulting in a 4,521-node network with 1,043
controllable (aggregated) loads. We group all the nodes into
unclustered nodes and four subtrees marked in Fig. 4. Subtrees
1–4 contain 357, 222, 310, and 154 nodes with controllable
loads, respectively. We fix the loads on all 292 unclustered
nodes for simplicity.

The three-phase unbalanced nonlinear power flow model is
simulated in OpenDSS. With default control of capacitors and
regulators in OpenDSS [35], one achieves the voltage profile
shown in Fig. 6 with orange dots, where under-voltages are
observed. We next disable the control of all the capacitors and
regulators to obtain the heavily under-voltage scenario marked
with blue dots in Fig. 6. We implement Algorithm 1 with this
scenario as the initial condition.

The simulation is conducted on a laptop with Intel Core
i7-7600U CPU @ 2.80GHz 2.90GHz, 8.00GB RAM, running
Python 3.6 on Windows 10 Enterprise Version.

A. Numerical Performance Evaluation

For each controllable node i of phase φ, we consider
minimizing the cost of its deviation from its nominal (most
preferred) load level ppφi p0q, q

φ
i p0qq, i.e., Cφi pp

φ
i , qφi q “ pp

φ
i ´

pφi p0qq
2`pqφi ´q

φ
i p0qq

2. We focus on voltage regulation here.
So, we set C0pP0q to 0.0005pP0 ´ P̃0q

2 with a small weight
and P̃0 “ P0p0q. vi and vi are uniformly set to 0.95 p.u.
and 1.05 p.u., respectively. We implement Algorithm 1 with
a constant stepsize 3.5 ˆ 10´4 for the primal update, and
3.5ˆ 10´3 for the dual.

Fig. 6: Voltages are strictly controlled within r0.95, 1.05s
p.u. by the hierarchical distributed algorithm.

Fig. 7: The minimal costs achieved by multi-phase algo-
rithm and single-phase algorithm.

1) Convergence and Computational Speed Improvement: It
takes about 1730 iterations to reach 1% of the optimal value
and 3000 iterations to reach the optimal; see the red curve
in Fig. 6 (right). This result is also comparable to those in
literature, e.g., [9].

The convergence dynamics of the centrally coordinated
algorithm is identical to the hierarchical distributed imple-
mentation as sampled and illustrated in Fig. 5. However, due
to the overall complexity reduction, the computational time
per iteration is reduced from more than 4s to 1s. Meanwhile,
if we consider parallel computation1 and takes the slowest
cluster to estimate the overall time consumed, each iteration
only takes 0.37s. Therefore, the overall computational speed
improvement is more than 10 folds without compromising any
accuracy of the OPF solution. Noticing that the computational
time at each cluster is approximately proportional to the square
of node number, we expect faster performance if more clusters,
each with a smaller number of nodes, are divided.

2) Voltage Regulation: We plot the regulated voltages ob-
tained by Algorithm 1 with green dots in Fig. 6. Note that the
voltage magnitudes of all nodes are strictly constrained within
the r0.95, 1.05s p.u. bound. In contrast, the default control of
regulators and capacitors cannot guarantee that all the voltages
are within this bound.

1We imitate the performance of parallel computation on one PC by timing
the computation for CC and each RC. If the algorithm is to be implemented
on multiple devices, we also need consider communication delay which is
ignored here.
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3) Comparison with Single-Phase Algorithm: We apply the
single-phase algorithm with the same setup for comparison.
The detailed results of the single-phase algorithm are referred
to [1]. The results show that it takes multi-phase algorithm
more time to execute each iteration (1s v.s 0.45s), which
is expected since the multi-phase algorithm executes more
computation by considering inter-phase sensitivity. On the
other hand, thanks to more accurate linearization, the minimal
cost obtained by the multi-phase algorithm is 17971, 4.6%
smaller than the value of 18840 obtained by the single-phase
algorithm in [1], as illustrated in Fig. 7. This result also echoes
with Eq. (39), which indicates that accuracy of linearization
model ρ affects algorithm performance.

VI. CONCLUSION

We proposed a hierarchical distributed implementation of
the primal-dual gradient algorithm to solve an OPF problem.
The objective of OPF is to minimize the total cost over all the
controllable DERs and a cost associated with the total network
load, subject to voltage regulation constraints. By utilizing the
information structure of tree/subtrees to reduce and distribute
computational loads the proposed implementation is scalable
to large multi-phase distribution networks. Performance of
our design is analytically characterized and numerically cor-
roborated. The significant improvement in convergence speed
shows the great potential of the proposed method for grid
optimization and control in real time.
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APPENDIX

A. Proof of Lemma 1

Proof: Denote by fpyq “
ř

iPN Cippi, qiq `C0pP0ppqq
and µJgpyq “ µJpv ´ vpp, qqq ` µJpvpp, qq ´ vq for
simplicity. Then T pzq can be equivalently decomposed into
the following operators:

T pzq “

„

∇yfpyq
∇µ φ2 }µ}

2
2



`

„

∇yµJgpyq
´∇µµJgpyq



“

„

∇yfpyq
∇µ φ2 }µ}

2
2



`

»

—

—

–

0 0 ´RJ RJ

0 0 ´XJ XJ

R X 0 0
´R ´X 0 0

fi

ffi

ffi

fl

»

—

—

–

p
q
µ
µ

fi

ffi

ffi

fl

`Constant.

We can verify that the first operator
„

∇yfpyq
∇µ φ2 }µ}

2
2



is strongly

monotone since fpyq and φ
2 }µ}

2
2 are strongly convex in y and

µ, respectively. The second (linear) operator is monotone since
»

—

—

–

0 0 ´RJ RJ

0 0 ´XJ XJ

R X 0 0
´R ´X 0 0

fi

ffi

ffi

fl

`

»

—

—

–

0 0 ´RJ RJ

0 0 ´XJ XJ

R X 0 0
´R ´X 0 0

fi

ffi

ffi

fl

J

ľ 0.

Therefore, T pzq is a strongly monotone operator as the
result of combining a strongly monotone operator and a
monotone operator.

B. Proof of Theorem 2

Proof: We have
}zpt` 1q ´ z˚}22

ď }zptq ´ εT pzptqq ´ z˚ ` εT pz˚q}22

“ }zptq ´ z˚}22 ` }εT pzptqq ´ εT pz
˚q}22

´2εpzptq ´ z˚qJpT pzptqq ´ T pz˚qq

ď p1` ε2L2 ´ 2εMq}zptq ´ z˚}22

where the first inequality comes from non-expansiveness of
projection operator, and the second from (10) and (11). Then
by Lemma 2 and condition (13), we have 0 ď 1 ` ε2L2 ´

2εM ă 1, i.e., }zpt ` 1q ´ z˚}22 ď ∆}zptq ´ z˚}22 for some
constant 0 ă ∆ ă 1.

Therefore, dynamics (9) converges to the unique saddle
point of (7) exponentially fast.
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